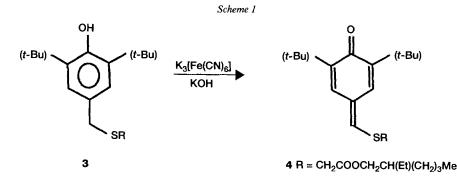
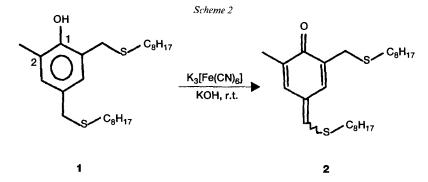
64. Stable Quinone Methides: Regioselective *para*-Oxidation of a 2,4-Bis[(alkylthio)methyl]phenol and Addition Reactions to Quinonemethides

by Hansrudolf Meier* and Hanspeter Kuenzi

Research Laboratories, Additives Division, Ciba Corporation, CH-1723 Marly 1

and Hermann Fuhrer and Günther Rist

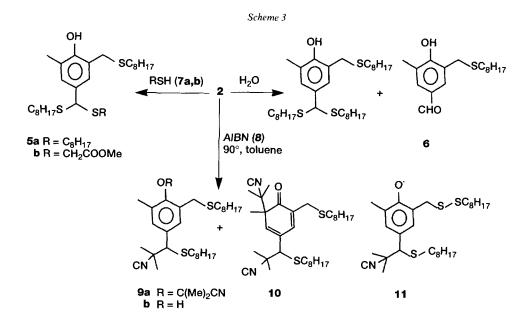

Physics Department, Ciba Corporation, CH-4002 Basel


(17.II.94)

The 2,4-bis-functionalized phenol 1 is dehydrogenated regioselectivity with potassium ferricyanide, affording the corresponding p-quinonemethide 2. Hydrolysis of 2 affords a mixture of dithioacetal 5a and benzaldehyde 6; 1,6-addition of thiols to 2 gives the dithioacetals 5 of benzaldehyde 6; reaction of 2 with 2,2'-azobis(isobutyronitrile) (= 2,2'-dimethyl-2,2'-azobis(propanenitrile)) leads to 9a, 9b, and 10, addition products of the 1-cyano-1-methylethyl radical. The structures of all products are confirmed mainly by ¹H- and ¹³C-NMR spectroscopy, and the mode of their formation is discussed.

Knowledge on mechanism of antioxidant activity in polymers is of considerable practical relevance for application and development of new stabilizers [1]. The following results are a small part of an investigation on the 2,4-bis-functionalized phenol 1 [2], a commercial antioxidant for elastomers [3]. Compound 1 is known to react with hydrogen peroxide which oxidizes the thioether moieties, affording the corresponding sulfoxides [2] [4].

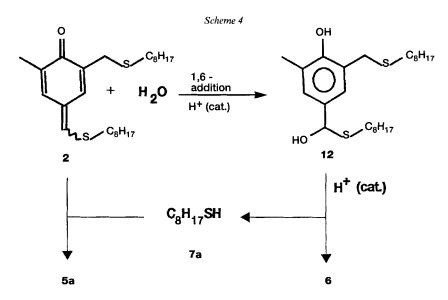
We report now a chemoselective and regioselective oxidation of 1 to *p*-quinonemethide 2 (without affecting the thioether groups; see below *Scheme 2*) and first results of reactions of 2 with nucleophiles and free radicals. *Pastor* [5] described the first example of a chemoselective oxidation of a *p*-thiomethylated phenol 3 leading to a stable *p*-quinonemethide 4 with one S-substituent at position 6; this was obtained by oxidation of 3 ($R = CH_2COOCH_2CH(Et)(CH_2)_1Me$) with ferricyanide (*Scheme 1*). *Koutek* and coworkers



[6] who attempted to synthesize 4 (R = Ph) could only isolate a mixture of the substituted benzaldehyde and benzoic acid, arising most probably from 4 (R = Ph) by hydrolysis and partial oxidation.

When using the same oxidation conditions $(K_3[Fe(CN)_6]/aqueous KOH solution/hexane, room temperature) starting from 1, analytically pure$ *p*-quinonemethide 2 is obtained without further purification as an orange oil in an almost quantitative yield (98%;*Scheme 2*). Structure 2 is confirmed by its spectral data (¹H- and ¹³C-NMR, IR, UV, and MS, see*Exper. Part*); both (*E*)- and (*Z*)-isomers are present in the reaction mixture. No indication for formation of an*o*-quinonemethide is found.

Flash chromatography of 2 on silica gel is not possible, since an (acid-catalyzed) addition of H_2O occurs (*Scheme 3*), affording a mixture of dithioacetal **5a** and aldehyde **6** (HPLC, using an aprotic eluent mixture, is the most appropriate method to monitor the


conversion of 2). A product ratio 6/5a of *ca.* 1.2:1 is observed in a preparative hydrolysis with acetone/H₂O (17 h at 58°, separation by flash chromatography (silica gel); yields 91 (6) and 71% (5a)) or in hydrolysis attempts using catalyses such as AcOH (2.5 h, 67°) and 2N HCl (1 min, room temperature) in THF (HPLC evidence). The structures of 5a and 6 are confirmed by their spectral data and NOE experiments.

Another 1,6-addition of nucleophiles occurs, when 2 is heated for 9 h with 1 equiv. of thiol 7a or 7b in hexane, affording 5a and 5b in yields of 98 and 76%, respectively (*Scheme 3*), after purification by flash chromatography (silica gel). The product 5a formed with octanethiol (7a) is identical to the product arising from 2 in the hydrolysis experiment.

Heating of a toluene solution of 2 and an excess of 2,2'-azobis(isobutyronitrile) (AIBN = 2,2'-dimethyl-2,2'-azobis(propanenitrile); 8) for 3 h to 90° and repeated flash chromatography of the residue after distillation *in vacuo* affords the three nitriles 9a, 9b, and 10 in 41, 5.5, and 14% yield, respectively (*Scheme 3*). The structures of 9a, 9b, and 10 were confirmed by their spectral data and by NOE experiments.

Discussion. – The preparation of 2 is the first example of a regioselective dehydrogenation of a 2,4-bis[(alkylthio)methyl]phenol to a p-quinonemethide. The latter appears to have a large preference for 1,6-addition of nucleophiles such as thiols and H₂O. This 1,6-selectivity appears to be due to the resonance-energy gain by rearomatization. This synthesis opens a new access top asymmetric p-hydroxybenzaldehyde dithioacetals such as **5b**. Related transformations of such interesting synthetic equivalents of functionalized benzaldehydes (*e.g.* **2**) and benzoic acids (*e.g.* dehydrogenated **5**) will be reported in a subsequent paper [7].

Addition of C-centered free radicals, such as the 1-cyano-1-methylethyl radical, probably occurs with preference at the C-end of the dienone system of 2 since all products isolated can be accounted for by a mechanism starting with formation of 11 (see *Scheme* 3). The fact that the quinonemethide 2 and related compounds are efficient C-radical

traps will be discussed more in detail in a publication concerning the antioxidant activity of 1 and especially the mechanism of incorporation of 1 into the polymer¹). Hydrolysis of 2 probably passes through the hemithioacetal 12 which can form the benzaldehyde 6 by elimination of the thiol or thiolate anion which in turn is trapped by 2, affording the dithioacetal 5a (*Scheme 4*). Further work is planned to evaluate the use of 2 and related compounds as intermediates for new functionalized phenols [7].

We thank Ciba-Geigy AG for kindly supporting this work.

Experimental Part

General. Reactions were carried out under either N₂ or Ar. Flash chromatography (FC): see [8]. HPLC: SP-8100 (Spectra Physics); Nucleosil-RP-C18 column (5 μ , 126 × 4.6 mm), elution with H₂O/MeCN/i-PrOH 20:60:20 für 2 min, then within 6 min change to MeCN/i-PrOH 80:20 followed by 18 min isocratic with the last solvent (Method A) or isocratic elution with MeCN/AcOEt 98:2 (Method B). TLC: silica gel; R_f values for hexane/AcOEt 9:1 (A). M.p.: Tottoli (Büchi); corrected. UV Spectra: Shimadzu UV-240 Graphicord spectrometer; $\lambda_{max}(\varepsilon)$ in nm. IR Spectra: Nicolet 20 SX; in cm⁻¹. ¹H- and ¹³C-NMR Spectra (Tables 1 and 2): Bruker AC300 (300 MHz), AM360 (¹H 360 MHz; ¹³C 90.552 MHz), or Varian Unity 500 (500 MHz) δ in ppm rel. to SiMe₄ (= 0 ppm), J in Hz. MS: SSQ 710 Finnigan MAT; EI or DCI; m/z (% rel. intensity). Elemental analyses were performed by the Analytical Research Services, Ciba Corporation.

2-Methyl-6-[(octylthio)methyl]-4-[(octylthio)methylidene]cyclohexa-2,5-dien-1-one (2). To a N₂-purged soln. of K₃[Fe(CN)₆] (97.2 g, 0.295 mol) and KOH (5.55 g, 0.099 mol) in H₂O (370 ml) was added a N₂-purged soln. of 1 (*Irganox 1520* [3]; 9.28 g, 0,0218 mol) in hexane (100 ml). The mixture was stirred at r.t. for 2 h and the org. phase separated, dried (Na₂SO₄), and evaporated at 60°/0.05 Torr: 9.05 g (98%) of a viscous orange oil ((*E*)/(*Z*)-mixture). Attempts to purify **2** by FC (silica gel) always led to hydrolytic decomposition (HPLC evidence (*Method B*)). UV (MeCN): 387 (30560), 263 (5760). IR (KBr): 1632 (C=O), 1606 (C=C). EI-MS: 422 (3, M^{++}), 309 (32, $[M - C_8H_{17}]^+$), 278 (100). Anal. calc. for C₂₅H₄₂OS₂ (422.73): C 71.03, H 10.01, S 15.17; found: C 71.06, H 9.89, S 15.08.

Hydrolysis of **2** in Acetone/Water. A soln. of **2** (15 g, 35.4 mmol) in acetone (200 ml) and H₂O (20 ml) was heated for 17 h at 58° and then evaporated. FC (hexane/AcOEt 98:2, 95:5, and 90:10) afforded **5a** and **6**.

4-[Bis(octylthio)methyl]-2-methyl-6-[(octylthio)methyl]phenol (**5a**): 9.21 g (91.4%) of yellow liquid. $R_f(A)$ 0.53. Further purification by recrystallisation from hexane at -45° afforded a slightly yellowish liquid. M.p. -30° (DSC). IR (KBr): 3320 (OH). MS: 423 (23, M^+), 278 (32, $[M - C_8H_{17}S]^+$), 277 (34), 165 (36), 135 (24), 41 (100). Anal. calc. for $C_{33}H_{60}OS_3$ (569.02): C 69.66, H 10.63, S 16.90; found: C 69.89, H 10.79, S 16.38.

4-Hydroxy-3-methyl-5-[(octylthio)methyl]benzaldehyde (6). Recrystallisation from hexane (at -20°): 3.65 (71.3%). M.p. 46°. $R_{\rm f}(A)$ 0.18. IR (CHCl₃): 3265 (OH), 1685 (C=O), 1597 (C=C). EI-MS: 294 (7, M^+), 149 (100, $[M - C_8H_{17}S]^+$), 145 (34, $C_8H_{17}S^+$). Anal. calc. for $C_{17}H_{26}O_2S$ (294.45): C 69.34, H 8.90, S 10.89; found: C 69.20, H 8.83, S 11.02.

Phenol **5a** from **2** and Thiol **7a**. A mixture of **2** (10.0 g, 23.65 mmol) octanethiol (**7a**; 4.0 g, 27.20 mmol), and hexane (20 ml) was heated for 9 h under reflux and then evaporated at 80°/0.03 mbar: 13.22 g (98%) of a yellow liquid, purity 96.5% (HPLC, *Method B*). It was further purified by FC (hexane/AcOEt 95:5): 10.10 g (75%), purity 98.6% (HPLC). $R_f(A) 0.53$. ¹H-NMR and IR: identical with those of **5a** obtained by hydrolysis of **2**. Anal. calc. for C₃₃H₆₀OS₃ (569.02): C 69.66, H 10.63, S 16.90; found: C 69.69, H 10.72, S 16.89.

 $4 - \{[(Methoxycarbonyl)methylthio](octylthio)methyl\}-2-methyl-6-[(octylthio)methyl]phenol (= Methyl$ ${\{4-Hydroxy-3-methyl-5-[(octylthio)methyl]phenyl}(octylthio)methylthio}acetate; 5b). As described for 5a, 5b$ was prepared from 2 (10 g, 23.7 mmol) and methyl thioglycolate (= methyl (thio)acetate; 3.39 g, 31.9 mmol) inhexane (20 ml). The solvent was evaporated and the residue purified by FC (hexane/AcOEt 95:5); 9.15 g (76%) of

¹) This work is part of an investigation on the stabilization mechanism of the commercial phenolic antioxidant 1 (*Irganox 1520*) in elastomers [2].

		Table 1.	¹ H-NMR Chem	ical Shifts [ppm]	and Coupling C	Table 1. ¹ H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of Compounds 1–10 ^a)	Compounds 1–10) ^a)	
	1	trans-2	cis-2	5a	Sb	6	9a ^b)	9b ^b)	10 _b)
$CH_2 - C(6) = 3.77 (s)$	3.77 (s)	3.55 (s)	3.57 (s)	3.76 (s)	3.78 (s)	3.85 (s)	3.78 (s)	3.81 (s)	3.53, 3.50 (AB, J = 15), 3.23, 3.28 (AB, I = 15),
H-C(5)	6.85 (d, J = 2)	7.01 ($d, J = 2$)	7.45 (d, J = 2)	7.03 (d, J = 2)	7.03 (d, J = 2)	7.48 (d, J = 2)	7.22 (d, J = 2)	2) $7.01 (d, J = 2)$ $7.45 (d, J = 2)$ $7.03 (d, J = 2)$ $7.03 (d, J = 2)$ $7.48 (d, J = 2)$ $7.22 (d, J = 2)$ $6.86 (d, J = 2)$ $7.35 (d, J = 2)$ $7.51 (d, J = 2)$	7.35 (d, J = 2), 7.35 (d, J = 2),
$CH_2 - C(4) \text{ or } 3.60 (s)$	3.60 (s)	7.2 (s)	7.17 (s)	4.77 (s)	5.0 (s)	9.81 (s)	3.63 (5)	3.60 (s)	(2, 2, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
Cn-C(4) H-C(3)	<u>ا</u> =	7.32 (d, J = 2)	6.87 (<i>d</i> , $J = 2$)	7.12 (d, J = 2)	7.15(d, J = 2)	7.63 (d, J = 2)	7.28 (d, J = 2)	2) $7.32(d, J = 2)$ $6.87(d, J = 2)$ $7.12(d, J = 2)$ $7.15(d, J = 2)$ $7.63(d, J = 2)$ $7.28(d, J = 2)$ $7.05(d, J = 2)$ $6.28(d, J = 2)$	6.28 (d, J = 2),
Me-C(2) 2.25 (s) OH 6.70 (s)	2.25 (s) 6.70 (s)	2.07 (s)	2.03 (s)	2.23 (s) 6.83 (s)	2.25 (s) 6.88 (s)	2.31 (s) 7.77 (s)	2.37 (s)	2.25 (s) 6.67 (s)	0.23 (<i>a</i> , <i>J</i> = <i>z</i>) not resolved
^a) Assignmer ^b) For conve	Assignments verified by double-resonance and nuclear <i>Overhauser</i> experiments; CDCl ₃ soln. at 25°. For convenience, the numbering of 1 is used.	uble-resonance a	und nuclear <i>Ove</i> . I.	r <i>hauser</i> experime	ents; CDCl ₃ solr	1. at 25°.			

		Τ	Table 2. ¹³ C-NMR Chemical Shifts [ppm] of Compounds 1–10 ^a)	Chemical Shifts [p]	pm] of Compounds	$1-10^{a}$)		
	1	trans-2 ^b)	5a	5b	6	9a ^c)	9b ^c)	10°)
C(6)	125.6 (s)	133.0 (s)	126.2 (s)	126.2 (s)	126.8 (s)	133.8 (s)	126.2 (s)	132.3 (s), 132.4 (s)
C(5)	128.0(d)	135.9(d)	127.5(d)	127.4(d)	130.1(d)	(p) 6.61	129.1 (d)	136.6 (d), 136.8 (d)
C(4)	129.3 (s)	128.5(s)	132.0 (s)	130.5 (s)	129.0 (s)	135.3(s)	129.6 (s)	135.1 (s), 135.3 (s)
C(3)	130.4(d)	129.1 (d)	129.9(d)	129.9 (d)	132.6(d)	130.9(d)	131.7 (d)	140.1(d), 140.2(d)
C(2)	121.2 (s)	136.4(s)	121.9 (5)	121.8 (s)	122.2(s)	133.4(s)	122.1 (s)	51.8 (s), 52.0 (s)
C(1)	152.2 (s)	185.7 (s)	153.5(s)	153.6 (s)	159.8 (s)	151.1(s)	153.9 (s)	200.1(s)
$CH_2-C(6)$	32.7 (1)	31.8 (t)	33.3 (t)	33.2 (t)	32.9 (1)	not resolved	32.5 (1)	not resolved
$CH_2 - C(4)$ or	35.3 (d)	149.4(d)	52.9 (d)	52.8(d)	191.0(d)	57.6 (d)	57.8 (d)	57.9 (d), 58.0 (d)
CH-C(4)								
Me-C(2)	15.4 (q)	16.7 (q)	16.1 (q)	15.9 (q)	15.9 (q)	18.9 (q)	16.3 (q)	22.1 (q), 23.3 (q)
^a) Multiplicity	(in parentheses) de	Multiplicity (in parentheses) deduced from DEPT spectra; CDCl ₃ soln. at 25°.	spectra; CDCl ₃ so	In. at 25°.				
^b) Minor cis-2:	Minor cis-2: resonances only w	only weak or not detected.	I.					
^c) For convenit	For convenience, the numbering of 1 is used.	g of 1 is used.						

Helvetica Chimica Acta – Vol. 77 (1994)

659

a waxy product. $R_{\rm f}(A)$ 0.24. IR (CHCl₃): 3330 (OH), 1734 (C=O). DCI-MS: 528 (< 1, M^{++}), 527 (2), 425 (11), 424 (22), 423 (100, $[M - \text{AcOCH}_2\text{S}]^+$), 384 (12), 383 (57, $[M - \text{C}_8\text{H}_1\text{S}]^+$), 279 (13), 278 (23), 277 (20). Anal. calc. for $\text{C}_{28}\text{H}_{48}\text{O}_3\text{S}_3$ (528.87): C 63.59, H 9.15, S 18.19; found: C 63.66, H 9.18, S 18.42.

Reaction of 2 with AIBN (8). A mixture of 2 (15.13 g, 35.8 mmol) and 8 (23.51 g, 143.13 mmol) in toluene (150 ml) was heated for 3 h to 90° and then evaporated. Repeated FC (hexane/AcOEt 98:2, 96:4, and 80:20) afforded 9a, 9b, and 10 as three pure fractions.

3-{4-(1-Cyano-1-methylethoxy)-3-methyl-5-[(octylthio)methyl]phenyl}-2,2-dimethyl-3-[(octylthio)methyl]propanenitrile (9a): 8.29 g (41%) of a yellowish oil. $R_{\Gamma}(A)$ 0.18. IR (KBr): 2234 (C≡N). EI-MS: 558 (6, M^+), 490 (59, $[M - C(Me)_2CN]^+$), 423 (7), 346 (29), 277 (19), 202 (35), 68 (100, $C(Me)_2 - CN^+$). Anal. calc. for $C_{33}H_{54}N_2OS_2$ (558.93): C 70.91, H 9.74, N 5.01, S 11.47; found: C 70.98, H 9.75, N 5.07, S 11.42.

3- {4-Hydroxy-3-methyl-5-[(octylthio)methyl]phenyl}-2,2-dimethyl-3-[(octylthio)methyl]propanenitrile (9b): 0.97 g (5.5%) of a yellowish oil. $R_{\rm f}(A)$ 0.29. IR (KBr): 3400 (br., OH), 2235 (C≡N). EI-MS: 491 (11, M^{+}), 423 (100, $[M - C(Me)_2 CN]^+$), 346 (44, $[M - C_8 H_{17}S]^+$), 277 (36, $[M - C(Me)_2 CN - C_8 H_{17}SH]^+$), 202 (21). Anal. calc. for C₂₉H₄₉NOS₂ (491.84): C 70.80, H 10.04, N 2.85, S 13.04; found: C 70.82, H 10.10, N 2.54, S 12.82.

3-{3-(1-Cyano-1-methylethyl)-3-methyl-5-[(actylthio)methyl]-4-oxocyclohexa-1,5-dienyl}-2,2-dimethyl-3-[(actylthio)methyl]propanenitrile (10): 2.88 g (16%) of a yellow oil. $R_{\rm f}$ (A) 0.11; mixture of diastereoisomers containing *ca*. 10% of an isomer of unknown structure. IK (KBr): 2234 (C≡N), 1664 (C=O), 1648 (C=C). EI-MS: 558 (2, M^{++}), 490 (72, $[M - C(Me)_2CN]^+$), 423 (8), 413 (11), 344 (15, $[M - C(Me)_2CN - C_8H_{17}SH]^+$), 277 (14), 202 (100). Anal. calc. for $C_{33}H_{54}N_2OS_2$ (558.93): C 70.91, H 9.74, N 5.01, S 11.47; found: C 70.88, H 9.72, N 4.78, S 11.45.

REFERENCES

- P. P. Klemchuk, 'Polymer Stabilization and Degradation', ACS Symposium Ser. 280, American Chemical Society, Washington, D.C., 1985.
- [2] H. Berttermann, P. Dubs, G. Knobloch, U. Kolczak, H. Künzi, R. Martin, H. Meier, G. Rist, in preparation.
- P. Dubs, G. Knobloch, H. Meier, Eur. Pat. EP428973 to Ciba-Geigy AG, priority date 29.5.1991 (CA: 1991, 115, 185157r); W. Stegmann, H. Meier, S. Evans, R. Martin, R. Luisoli, Eur. Pat. EP275832 to Ciba-Geigy AG, priority date 24.12.1986 (CA: 1989, 110, 25732t).
- [4] H. Meier, R. Pitteloud, Eur. Pat. EP441742 to Ciba-Geigy AG, priority date 5.2.1990 (CA: 1991, 115, 255805b).
- [5] St. D. Pastor, Sulfur Lett. 1991, 12, 273; for a review on quinonemethides, see A. A. Volod'kin, V. V. Ershov, Russ. Chem. Rev. 1988, 57, 336.
- [6] J. Velek, B. Koutek, O. Schmidt, L. Pavlickova', M. Soucek, *Collect. Czech. Chem. Commun.* 1976, 41, 1419;
 B. Koutek, L. Pavlickova', J. Velek, V. Beranek, M. Soucek, *ibid.* 1976, 41, 2607; *ibid.* 1976, 41, 2614.
- [7] H. Fuhrer, H. Künzi, H. Meier, G. Rist, in preparation.
- [8] W.C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.